AltitudeOmics: The Integrative Physiology of Human Acclimatization to Hypobaric Hypoxia and Its Retention upon Reascent

نویسندگان

  • Andrew W. Subudhi
  • Nicolas Bourdillon
  • Jenna Bucher
  • Christopher Davis
  • Jonathan E. Elliott
  • Morgan Eutermoster
  • Oghenero Evero
  • Jui-Lin Fan
  • Sonja Jameson-Van Houten
  • Colleen G. Julian
  • Jonathan Kark
  • Sherri Kark
  • Bengt Kayser
  • Julia P. Kern
  • See Eun Kim
  • Corinna Lathan
  • Steven S. Laurie
  • Andrew T. Lovering
  • Ryan Paterson
  • David M. Polaner
  • Benjamin J. Ryan
  • James L. Spira
  • Jack W. Tsao
  • Nadine B. Wachsmuth
  • Robert C. Roach
چکیده

An understanding of human responses to hypoxia is important for the health of millions of people worldwide who visit, live, or work in the hypoxic environment encountered at high altitudes. In spite of dozens of studies over the last 100 years, the basic mechanisms controlling acclimatization to hypoxia remain largely unknown. The AltitudeOmics project aimed to bridge this gap. Our goals were 1) to describe a phenotype for successful acclimatization and assess its retention and 2) use these findings as a foundation for companion mechanistic studies. Our approach was to characterize acclimatization by measuring changes in arterial oxygenation and hemoglobin concentration [Hb], acute mountain sickness (AMS), cognitive function, and exercise performance in 21 subjects as they acclimatized to 5260 m over 16 days. We then focused on the retention of acclimatization by having subjects reascend to 5260 m after either 7 (n = 14) or 21 (n = 7) days at 1525 m. At 16 days at 5260 m we observed: 1) increases in arterial oxygenation and [Hb] (compared to acute hypoxia: PaO2 rose 9±4 mmHg to 45±4 while PaCO2 dropped a further 6±3 mmHg to 21±3, and [Hb] rose 1.8±0.7 g/dL to 16±2 g/dL; 2) no AMS; 3) improved cognitive function; and 4) improved exercise performance by 8±8% (all changes p<0.01). Upon reascent, we observed retention of arterial oxygenation but not [Hb], protection from AMS, retention of exercise performance, less retention of cognitive function; and noted that some of these effects lasted for 21 days. Taken together, these findings reveal new information about retention of acclimatization, and can be used as a physiological foundation to explore the molecular mechanisms of acclimatization and its retention.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of High intensity interval training and hypobaric hypoxia on Body weight changes and Endurance performance in Male wistar rats following the tapering program

Introduction: Adaptation to attitude is a complementary exercise to increase athletes' fitness and physiological performance. The present study investigated the effect of high intensity interval training at the hypobaric hypoxia conditions on weight changes and endurance performance test in rats following a three-weeks tapering period. Materials and Methods: In this experimental study, 25 m...

متن کامل

AltitudeOmics: cerebral autoregulation during ascent, acclimatization, and re-exposure to high altitude and its relation with acute mountain sickness.

Cerebral autoregulation (CA) acts to maintain brain blood flow despite fluctuations in perfusion pressure. Acute hypoxia is thought to impair CA, but it is unclear if CA is affected by acclimatization or related to the development of acute mountain sickness (AMS). We assessed changes in CA using transfer function analysis of spontaneous fluctuations in radial artery blood pressure (indwelling c...

متن کامل

Human physiological and metabolic responses to an attempted winter crossing of Antarctica: the effects of prolonged hypobaric hypoxia.

An insufficient supply of oxygen to the tissues (hypoxia), as is experienced upon high-altitude exposure, elicits physiological acclimatization mechanisms alongside metabolic remodeling. Details of the integrative adaptive processes in response to chronic hypobaric hypoxic exposure remain to be sufficiently investigated. In this small applied field study, subjects (n = 5, male, age 28-54 years)...

متن کامل

Adaptation to hypobaric hypoxia involves GABA A receptors in the pons.

Survival in low-oxygen environments requires adaptation of sympathorespiratory control networks located in the brain stem. The molecular mechanisms underlying adaptation are unclear. In naïve animals, acute hypoxia evokes increases in phrenic (respiratory) and splanchnic (sympathetic) nerve activities that persist after repeated challenges (long-term facilitation, LTF). In contrast, our studies...

متن کامل

Classical eyeblink conditioning during acute hypobaric hypoxia is improved in acclimatized mice and involves Fos expression in selected brain areas.

This work attempts to evaluate the cognitive aspects of the acclimatization ability of mice submitted to simulated altitude. Critical altitudes were detected by evaluating open field activity, combined or not with object recognition tasks, at different acute simulated altitudes. Results showed impaired cognitive abilities at approximately 3,733 m and above. To evaluate acclimatization capabilit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014